Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.582
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38663994

RESUMO

BACKGROUND: Alzheimer's disease (AD)-related neuropathological changes can occur decades before clinical symptoms. We aimed to investigate whether neurodevelopment and/or neurodegeneration affects the risk of AD, through reducing structural brain reserve and/or increasing brain atrophy, respectively. METHODS: We used bidirectional two-sample Mendelian randomisation to estimate the effects between genetic liability to AD and global and regional cortical thickness, estimated total intracranial volume, volume of subcortical structures and total white matter in 37 680 participants aged 8-81 years across 5 independent cohorts (Adolescent Brain Cognitive Development, Generation R, IMAGEN, Avon Longitudinal Study of Parents and Children and UK Biobank). We also examined the effects of global and regional cortical thickness and subcortical volumes from the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium on AD risk in up to 37 741 participants. RESULTS: Our findings show that AD risk alleles have an age-dependent effect on a range of cortical and subcortical brain measures that starts in mid-life, in non-clinical populations. Evidence for such effects across childhood and young adulthood is weak. Some of the identified structures are not typically implicated in AD, such as those in the striatum (eg, thalamus), with consistent effects from childhood to late adulthood. There was little evidence to suggest brain morphology alters AD risk. CONCLUSIONS: Genetic liability to AD is likely to affect risk of AD primarily through mechanisms affecting indicators of brain morphology in later life, rather than structural brain reserve. Future studies with repeated measures are required for a better understanding and certainty of the mechanisms at play.

2.
Brain Struct Funct ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664257

RESUMO

The Guiana dolphin (Sotalia guianensis) is a common species along Central and South American coastal waters. Although much effort has been made to understand its behavioral ecology and evolution, very little is known about its brain. The use of ultra-high field MRI in anatomical descriptions of cetacean brains is a very promising approach that is still uncommon. In this study, we present for the first time a full anatomical description of the Guiana dolphin's brain based on high-resolution ultra-high-field magnetic resonance imaging, providing an exceptional level of brain anatomical details, and enriching our understanding of the species. Brain structures were labeled and volumetric measurements were delineated for many distinguishable structures, including the gray matter and white matter of the cerebral cortex, amygdala, hippocampus, superior and inferior colliculi, thalamus, corpus callosum, ventricles, brainstem and cerebellum. Additionally, we provide the surface anatomy of the Guiana dolphin brain, including the labeling of main sulci and gyri as well as the calculation of its gyrification index. These neuroanatomical data, absent from the literature to date, will help disentangle the history behind cetacean brain evolution and consequently, mammalian evolution, representing a significant new source for future comparative studies.

3.
iScience ; 27(5): 109662, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38665205

RESUMO

Atypical perinatal sensory experience in preterm infants is thought to increase their risk of neurodevelopmental disabilities by altering the development of the sensory cortices. Here, we used resting-state fMRI data from preterm and term-born infants scanned between 32 and 48 weeks post-menstrual age to assess the effect of early ex-utero exposure on sensory cortex development. Specifically, we utilized a measure of local correlated-ness called regional homogeneity (ReHo). First, we demonstrated that the brain-wide distribution of ReHo mirrors the known gradient of cortical maturation. Next, we showed that preterm birth differentially reduces ReHo across the primary sensory cortices. Finally, exploratory analyses showed that the reduction of ReHo in the primary auditory cortex of preterm infants is related to increased risk of autism at 18 months. In sum, we show that local connectivity within sensory cortices has different developmental trajectories, is differentially affected by preterm birth, and may be associated with later neurodevelopment.

4.
J Comp Neurol ; 532(4): e25617, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38629472

RESUMO

The New World suboscines (Passeriformes and Tyrannides) are one of the biggest endemic vertebrate radiations in South America, including the families Furnariidae and Tyrannidae. Avian brain morphology is a reliable proxy to study their evolution. The aim of this work is to elucidate whether the brains of these families reflect the ecological differences (e.g., feeding behavior) and to clarify macroevolutionary aspects of their neuroanatomy. Our hypotheses are as follows: Brain size is similar between both families and with other Passeriformes; brain morphology in Tyrannides is the result of the pressure of ecological factors; and brain disparity is low since they share ecological traits. Skulls of Furnariidae and Tyrannidae were micro-computed tomography-scanned, and three-dimensional models of the endocast were generated. Regression analyses were performed between brain volume and body mass. Linear and surface measurements were used to build phylomorphospaces and to calculate the amount of phylogenetic signal. Tyrannidae showed a larger brain disparity than Furnariidae, although it is not shaped by phylogeny in the Tyrannides. Furnariidae present enlarged Wulsts (eminentiae sagittales) but smaller optic lobes, while in Tyrannidae, it is the opposite. This could indicate that in Tyrannides there is a trade-off between the size of these two visual-related brain structures.


Assuntos
Passeriformes , Animais , Humanos , Passeriformes/anatomia & histologia , Filogenia , Microtomografia por Raio-X , Encéfalo/anatomia & histologia
5.
Clin Neuroradiol ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668868

RESUMO

PURPOSE: The thalamo-mesencephalic (TM) branches of the posterior cerebral artery (PCA) supply critical structures. Previous descriptions of these vessels are inconsistent and almost exclusively rely on cadaver studies. We aimed to provide a neuroradiological description of TM vessels in vivo based on routine 3D rotational angiographies (3D-RA). METHODS: We analyzed 3D-RAs of 58 patients with pathologies remote from the PCA. PCA-origins were considered. Delineation, origin and number of branches of the collicular artery (CA), the accessory CA (ACA), the posterior thalamoperforating artery (PTA), the thalamogeniculate artery (TGA), and the posterior medial (PMCA) and lateral (PCLA) choroid arteries were assessed. The PTAs were categorized based on Percheron's suggested classification. RESULTS: A CA was identified in 84%, an ACA in 20%. The PTA was delineated in 100%. In 27%, PTA anatomy had features of several Percheron types (n = 7) or vessels emanating from a net like origin (n = 9). 26% had a type IIb PTA. A fetal type PCA origin with hypoplastic ipsilateral P1 was observed in 5 cases with type IIa (n = 2) or type IIb (n = 3) PTAs originating from contralateral P1. The TGA was identified in 85% of patients, with ≥ 2 branches in 67%. The PMCA was delineable in 41%, the PLCA in 100%. CONCLUSION: The prevalence of a proper "Artery of Percheron" type IIb PTA seems to be higher than previously reported. A fetal type P1-origin may be predictive of a type IIa/b PTA emanating from contralateral P1. 3D-RA may be useful for planning PCA interventions, as impairment of TM branches is a severe risk.

6.
Netw Neurosci ; 8(1): 138-157, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562298

RESUMO

Despite a five order of magnitude range in size, the brains of mammals share many anatomical and functional characteristics that translate into cortical network commonalities. Here we develop a machine learning framework to quantify the degree of predictability of the weighted interareal cortical matrix. Partial network connectivity data were obtained with retrograde tract-tracing experiments generated with a consistent methodology, supplemented by projection length measurements in a nonhuman primate (macaque) and a rodent (mouse). We show that there is a significant level of predictability embedded in the interareal cortical networks of both species. At the binary level, links are predictable with an area under the ROC curve of at least 0.8 for the macaque. Weighted medium and strong links are predictable with an 85%-90% accuracy (mouse) and 70%-80% (macaque), whereas weak links are not predictable in either species. These observations reinforce earlier observations that the formation and evolution of the cortical network at the mesoscale is, to a large extent, rule based. Using the methodology presented here, we performed imputations on all area pairs, generating samples for the complete interareal network in both species. These are necessary for comparative studies of the connectome with minimal bias, both within and across species.

7.
Cureus ; 16(3): e55377, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38562356

RESUMO

Background Neuroanatomy is one of the most complex areas of anatomy to teach to medical students. Traditional study methods such as atlases and textbooks are mandatory but require significant effort to conceptualize the three-dimensional (3D) aspects of the neuroanatomical regions of interest. Objectives To test the feasibility of human anatomy teaching medical students in a virtual reality (VR) immersive environment using photorealistic three-dimensional models (PR3DM) of human anatomy, in a limited anatomical body donation program. Methods We used surface scanning technology (photogrammetry) to create PR3DM of brain dissections. The 3D models were uploaded to VR headsets and used in immersive environment classes to teach second-year medical students. Twenty-eight medical students (mean age 20.11, SD 1.42), among which 19 females (n=28/67.9%) and nine males (n=28/32.1%), participated in the study. The students had either none or minimal experience with the use of VR devices. The duration of the study was three months. After completing the curriculum, a survey was done to examine the results. Results The average rating of the students for their overall experience with the method is 4.57/5 (SD=0.63). The "Possibility to study models from many points of view" and "Good Visualization of the models" were the most agreed upon advantages, with 24 students (n=28, 85.7%), and 95% confidence intervals (CI) [0.6643, 0.9532]. The limited availability of the VR headsets was the major disadvantage as perceived by the students, with 11 students (n=28, 39.3%), 95% CI [0.2213, 0.5927] having voted for the option. The majority of the students (25) (n=28, 89.2%, SD=0.31) agreed with the statement that the use of VR facilitated their neuroanatomy education. Conclusion This study shows the future potential of this model of training in limited cadaver dissection options to provide students with modern technological methods of training. Our first results indicate a prominent level of student satisfaction from VR training with minimum negative reactions to the nature of headsets. The proof of concept for the application of photorealistic models in VR neuroanatomy training combined with the initial results of appreciation among the students predisposes the application of the method on a larger scale, adding a nuance to the traditional anatomy training methods. The low number of headsets used in the study limits the generalization of the results but offers possibilities for future perspectives of research.

8.
J Neurosurg ; 140(4): 949-957, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38564815

RESUMO

OBJECTIVE: The authors aimed to review the frontal lobe's surgical anatomy, describe their keyhole frontal lobectomy technique, and analyze the surgical results. METHODS: Patients with newly diagnosed frontal gliomas treated using a keyhole approach with supramaximal resection (SMR) from 2016 to 2022 were retrospectively reviewed. Surgeries were performed on patients asleep and awake. A human donor head was dissected to demonstrate the surgical anatomy. Kaplan-Meier curves were used for survival analysis. RESULTS: Of the 790 craniotomies performed during the study period, those in 47 patients met our inclusion criteria. The minimally invasive approach involved four steps: 1) debulking the frontal pole; 2) subpial dissection identifying the sphenoid ridge, olfactory nerve, and optic nerve; 3) medial dissection to expose the falx cerebri and interhemispheric structures; and 4) posterior dissection guided by motor mapping, avoiding crossing the inferior plane defined by the corpus callosum. A fifth step could be added for nondominant lesions by resecting the inferior frontal gyrus. Perioperative complications were recorded in 5 cases (10.6%). The average hospital length of stay was 3.3 days. High-grade gliomas had a median progression-free survival of 14.8 months and overall survival of 23.9 months. CONCLUSIONS: Keyhole approaches enabled successful SMR of frontal gliomas without added risks. Robust anatomical knowledge and meticulous surgical technique are paramount for obtaining successful resections.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Estudos Retrospectivos , Glioma/diagnóstico por imagem , Glioma/cirurgia , Glioma/patologia , Procedimentos Neurocirúrgicos/métodos , Craniotomia/métodos
10.
J Neurol Sci ; 460: 123013, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38653116

RESUMO

BACKGROUND: Lesion occurring in the brainstem may cause a postural tilt and balance disorders, which could be due to an inaccurate perception of the body orientation. The objective of this study was to determine the effects of a brainstem stroke on body representation in horizontal and frontal plane, and links with impaired posture and neuroanatomy. METHODS: Forty patients with stroke in left brainstem (L-BS) or right (R-BS) were compared with 15 matched control subjects (C). The subjective straight-ahead (SSA) was investigated using a method disentangling lateral deviation and tilt components of error. RESULTS: The L-BS patients had contralesional lateral deviation of SSA. In addition, they showed an ipsilesional tilt, more severe for the trunk than for the head. By contrast, in R-BS patients, the representation of the body midline was fairly accurate in both the horizontal and frontal planes and did not differ from that of control subjects. CONCLUSION: This work highlights an asymmetry of representation of body associated with left brainstem lesions extending to the right cerebral hemisphere. This deviation appears only after a left lesion, which may point to a vestibular dominance. These results open a new perspective of neuro-rehabilitation of postural disorders after a stroke, with the correction of the representation of body orientation.

11.
Surg Neurol Int ; 15: 106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628527

RESUMO

Background: Neuro-ophthalmology, bridging neurology and ophthalmology, highlights the nervous system's crucial role in vision, encompassing afferent and efferent pathways. The evolution of this field has emphasized the importance of neuroanatomy for precise surgical interventions, presenting educational challenges in blending complex anatomical knowledge with surgical skills. This review examines the interplay between neuroanatomy and surgical practices in neuro-ophthalmology, aiming to identify educational gaps and suggest improvements. Methods: A literature search across databases such as PubMed, Scopus, and Web of Science was conducted, focusing on the implications of neuroanatomy in neuro-ophthalmic surgery education and practice. The review synthesizes insights from both recent and foundational studies to highlight current understandings and future research directions, particularly in educational approaches. Results: Findings indicate that 3D digital modeling and virtual reality have significantly enhanced neuroophthalmic surgical education by providing immersive and engaging learning experiences. For instance, detailed 3D brain atlases offer comprehensive resources for understanding the central nervous system's normal and pathological states. Although studies show that 3D and traditional 2D methods achieve similar post-test results, 3D methods notably improve engagement and motivation, suggesting a shift toward more interactive learning environments. Conclusion: Integrating both traditional and innovative educational tools is crucial for the progression of neuro-ophthalmic surgical training. This balance helps overcome educational hurdles and better prepare future surgeons. Continuous research and collaboration are essential to refine educational strategies, ultimately aiming to enhance patient care in neuro-ophthalmology.

12.
Anat Sci Educ ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600432

RESUMO

Neuroanatomy is a notoriously challenging subject for medical students to learn. Due to the coronavirus disease-19 (COVID-19) pandemic, anatomical education transitioned to an online format. We assessed student performance in, and attitudes toward, an online neuroanatomy assessment compared to an in-person equivalent, as a marker of the efficacy of remote neuroanatomy education. Participants in the National Undergraduate Neuroanatomy Competition (NUNC) 2021 undertook two online examinations: a neuroanatomically themed multiple-choice question paper and anatomy spotter. Students completed pre- and post-examination questionnaires to gauge their attitudes toward the online competition and prior experience of online anatomical teaching/assessment. To evaluate performance, we compared scores of students who sat the online (2021) and in-person (2017) examinations, using 12 identical neuroradiology questions present in both years. Forty-six percent of NUNC 2021 participants had taken an online anatomy examination in the previous 12 months, but this did not impact examination performance significantly (p > 0.05). There was no significant difference in examination scores between in-person and online examinations using the 12 neuroradiology questions (p = 0.69). Fifty percent of participants found the online format less enjoyable, with 63% citing significantly fewer networking opportunities. The online competition was less stressful for 55% of participants. This study provides some evidence to suggest that student performance is not affected when undertaking online examinations and proposes that online neuroanatomy teaching methods, particularly for neuroradiology, may be equally as effective as in-person approaches within this context. Participants perceived online examinations as less stressful but raised concerns surrounding the networking potential and enjoyment of online events.

13.
Anat Sci Int ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587583

RESUMO

Relatively more-apparent body parts are often used to name relatively less-apparent body parts. To explore this etymological phenomenon, this report assesses anatomical terminology derived from some of the most apparent structures of the human body-hairs. Hair-related anatomical terminology involves varied etymons, roots, and derivatives: calvus "bald," cilia "eyelashes," glaber "hairless," pilus "hair," pubes (historically referring to the developing beard), pudendum "modesty" (referring to hair growth that covers genitalia), tempus "time" (referring to the location where hair commonly grays, thus showing a person's age), and tragus "goat" (referring to the tuft of hair that resembles the beard of a goat). Also including lanugo, vibrissae, hirci, flocculus, and cauda equina, a systematic review of Terminologia Anatomica and Terminologia Neuroanatomica revealed 285 unique non-duplicate hair-related terms. Several anatomical terms allude to particular age groups or sexes, but are used indiscriminately (e.g., tragus alludes to the older male ear, though may describe the fetal female ear). Likewise, human-centric anatomical terminology influences non-human anatomical terminology- a turtle has a "temporal bone" only because some humans develop gray hair on the sides of their heads as they age. Accordingly, etymological recursion is common: The human ear has a tragus, named after the goat, and the goat ear has a tragus, named after the human tragus, that was named after the goat. The use of Latin as the foundation of anatomical and medical terminology may appear seriously supercilious; however, it is often simply super silly. After all, hundreds of body parts are formally named after hair.

14.
Prog Brain Res ; 284: 1-9, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38609288

RESUMO

The chapter reviews certain topics in outline. It starts with a brief account of the nature of surgery. This is followed by a short account of modern management of cranial trauma including the evolution of notions of anatomy and pathophysiology. It is emphasized that these principles are and must be irrelevant to the management of cranial trauma in the period covered in this book from Hippocrates to the end of the 18th century. Historical errors arising from assuming modern principles applied in historical practice are mentioned. Finally, the risks inherent in accepting images without questioning their authorship and provenance is also mentioned.


Assuntos
Livros , Humanos
15.
Neurohospitalist ; 14(2): 195-198, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38666275

RESUMO

Lateral medullary syndrome is a common presentation of posterior circulation ischemia that presents with ipsilateral Horner syndrome, ipsilateral facial numbness, contralateral body numbness, vestibular symptoms, ataxia, dysphagia, and dysarthria. Here, we describe an 84-year-old who presented to the hospital with right upper motor neuron facial weakness and gait abnormality found to have a right lateral medullary ischemic stroke. Multiple MRI's, including with thin brainstem slices, were without evidence of pontine, midbrain or cerebral ischemia outside the medulla. We postulate that the patient's ipsilateral upper motor neuron facial weakness was caused by involvement of aberrant corticobulbar fibers in the medulla ascending to the facial nucleus.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38642885

RESUMO

OBJECTIVE: During radical pelvic surgeries fibers of the autonomic pelvic nervous network can be accidentally damaged leading to significant visceral sequelae, which dramatically affect women's quality of life because of urinary, anorectal, and sexual postoperative dysfunctions.1,2 Direct visualization is one way to preserve hypogastric nerves(HNs), pelvic splanchnic nerves(PSNs), and the bladder branches from the inferior hypogastric plexus(IHP). However, the literature lacks critical photos and/or illustrations that are necessary to understand the precise anatomy needed to preserve the pelvic autonomic fibers. DESIGN: Narrated laparoscopic video footage for identifying, dissecting, and preserving the autonomic nerve bundles during pelvic surgery. SETTING: Tertiary level hospital - "IRCCS Istituto Nazionale dei Tumori", Milano, Italy. INTERVENTIONS: Visceral pelvic innervation is established by the superior hypogastric plexus(SHP) located anteriorly to the aortic bifurcation and the median sacral vessels and carries mostly sympathetic fibers. SHP divides in front of the sacrum into the right and left HN. At the level of the paracervix, the HNs join the parasympathetic PSNs coming out from sacral root S2, S3, S4 to form the IHP.2-5 Here, we performed laparoscopic surgery, before "Laparoscopic Approach to Cervical Cancer" trial (LACC) era, identifying key anatomic landmarks useful to highlight the path of the most commonly encountered autonomic pelvic nerves in gynecologic radical surgery: during the narration we describe and illustrate the procedure to identify all autonomic pelvic nerves, the sympathetic fibers, the PSNs, and the bladder branch emerging from the IHP in order to preserve their anatomic and functional integrity. This technique is anatomically and surgically indicated for adequate removal of the parametrial issues and vagina while preserving the total pelvic nervous system. CONCLUSION: Nerve-sparing surgery reduces bowel-, bladder- and sexual- dysfunction without decreasing surgical efficacy.1,2 To accomplish safe and effective surgery, comprehension of the three dimensional structure of the vascular and nerve anatomy in the pelvis is essential. This video provides a great resource to educate surgeons, especially the youngest ones, about the retroperitoneal nervous networking: we identified the autonomic nerve pathway from adjacent tissues along the pathway consisting of cardinal, sacro-uterine, rectouterine/vaginal, and vesico-uterine ligaments.

17.
Surg Radiol Anat ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429407

RESUMO

Morphological and morphometric variants of the anterior communicating artery (AComA) have been described by multiple studies; however, a complete classification system of all possible morphological variants with their prevalence is lacking. The current systematic review with meta-analysis combines data from different databases, concerning the AComA morphological and morphometric variants (length and diameter). Emphasis was given to the related clinical implications to highlight the clinical value of their knowledge. The typical AComA morphology occurs with a pooled prevalence (PP) of 67.3%, while the PP of atypical AComA is 32.7%. The identified AComA morphological variants (artery's hypoplasia, absence, duplication, triplication, differed shape, fenestration, and the persistence of a median artery of the corpus callosum- MACC) were classified in order of frequency. The commonest presented variants were the AComA hypoplasia (8%) and the anterior cerebral artery (ACA) fusion (5.9%), and the rarest ones were the MACC persistence (2.3%), and the AComA triplication (0.7%). The knowledge of those variants is essential, especially for neurosurgeons operating in the area. Given the high prevalence of AComA aneurysms, an adequate and complete classification of those variants is of utmost importance.

18.
Adv Neurobiol ; 36: 203-225, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468034

RESUMO

From the morphological point of view, the nervous system exhibits a fractal, self-similar geometry at various levels of observations, from single cells up to cell networks. From the functional point of view, it is characterized by a hierarchical organization in which self-similar structures (networks) of different miniaturizations are nested within each other. In particular, neuronal networks, interconnected to form neuronal systems, are formed by neurons, which operate thanks to their molecular networks, mainly having proteins as components that via protein-protein interactions can be assembled in multimeric complexes working as micro-devices. On this basis, the term "self-similarity logic" was introduced to describe a nested organization where, at the various levels, almost the same rules (logic) to perform operations are used. Self-similarity and self-similarity logic both appear to be intimately linked to the biophysical evidence for the nervous system being a pattern-forming system that can flexibly switch from one coherent state to another. Thus, they can represent the key concepts to describe its complexity and its concerted, holistic behavior.


Assuntos
Sistema Nervoso , Neurônios , Humanos , Neurônios/fisiologia , Lógica , Comunicação Celular
19.
Front Neurosci ; 18: 1340108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38449735

RESUMO

Increased knowledge about sex differences is important for development of individualized treatments against many diseases as well as understanding behavioral and pathological differences. This review summarizes sex chromosome effects on gene expression, epigenetics, and hormones in relation to the brain. We explore neuroanatomy, neurochemistry, cognition, and brain pathology aiming to explain the current state of the art. While some domains exhibit strong differences, others reveal subtle differences whose overall significance warrants clarification. We hope that the current review increases awareness and serves as a basis for the planning of future studies that consider both sexes equally regarding similarities and differences.

20.
J Comp Neurol ; 532(3): e25607, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38501930

RESUMO

Many predatory animals, such as the praying mantis, use vision for prey detection and capture. Mantises are known in particular for their capability to estimate distances to prey by stereoscopic vision. While the initial visual processing centers have been extensively documented, we lack knowledge on the architecture of central brain regions, pivotal for sensory motor transformation and higher brain functions. To close this gap, we provide a three-dimensional (3D) reconstruction of the central brain of the Asian mantis, Hierodula membranacea. The atlas facilitates in-depth analysis of neuron ramification regions and aides in elucidating potential neuronal pathways. We integrated seven 3D-reconstructed visual interneurons into the atlas. In total, 42 distinct neuropils of the cerebrum were reconstructed based on synapsin-immunolabeled whole-mount brains. Backfills from the antenna and maxillary palps, as well as immunolabeling of γ-aminobutyric acid (GABA) and tyrosine hydroxylase (TH), further substantiate the identification and boundaries of brain areas. The composition and internal organization of the neuropils were compared to the anatomical organization of the brain of the fruit fly (Drosophila melanogaster) and the two available brain atlases of Polyneoptera-the desert locust (Schistocerca gregaria) and the Madeira cockroach (Rhyparobia maderae). This study paves the way for detailed analyses of neuronal circuitry and promotes cross-species brain comparisons. We discuss differences in brain organization between holometabolous and polyneopteran insects. Identification of ramification sites of the visual neurons integrated into the atlas supports previous claims about homologous structures in the optic lobes of flies and mantises.


Assuntos
Cérebro , Baratas , Mantódeos , Animais , Drosophila melanogaster , Telencéfalo , Encéfalo , Drosophila
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...